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Abstract
Spin wave excitations in a magnetic structure consisting of a series of long
permalloy stripes of a rectangular cross section magnetized along the stripe
length and situated above a continuous permalloy film are studied both
experimentally and theoretically. Stripes and continuous film are coupled
by dipole–dipole interaction across 10 nm thick Cu spacers. Experimental
measurements made using the Brillouin light scattering technique (with the light
wavevector oriented along the stripe width) provide evidence for one dispersive
spin wave mode associated with the continuous film and several discrete non-
dispersive modes resonating within the finite width of the stripes.

To interpret the experimental spectra, an analytic theory based on the spin
wave formalism for finite-width magnetic stripes has been developed, achieving
a good qualitative and partly quantitative description of the experimentally
observed spin wave spectrum of the system. In particular, it is explained why
the presence of a continuous magnetic film near the magnetic stripe leads to a
substantial decrease of the frequencies of the discrete dipolar spin wave modes
localized within the stripes. A more quantitative description of the measured
frequencies and of the spatial profiles of the spin wave eigenmodes has been
obtained by numerical calculations performed using a finite element method.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The study of spin dynamics in laterally patterned magnetic structures is an interesting and
challenging research field. Its development started about a decade ago when advances in
lithography made possible the realization of patterns of nanometric magnetic elements with
controlled lateral shape and dimensions. Ordered arrays of long magnetic stripes with
micrometric width served as a model system to shed light on the new properties of spin wave
excitations in laterally confined magnetic elements. These new properties arise both from the
boundary conditions for the dynamical magnetization at the lateral edges of magnetic elements
and from the inhomogeneity of the dipolar demagnetizing field associated to the particular
shape of the magnetic elements.

The first studies were performed on stripe arrays with relatively large distances between
stripes, when the dipole–dipole interaction between stripes was negligible [1]. In that case,
the frequency spectrum of an array of stripes, measured as a function of the in-plane wave
number, coincides with that of a single stripe. It consists of several dispersionless branches
corresponding to spin wave modes standing along the stripe width. Later, experimental and
theoretical investigations were performed on arrays of closely spaced magnetic stripes, in
which dipole–dipole interaction between stripes was important, and a collective spin wave
mode of the whole array with a continuous frequency spectrum was found in a certain range of
frequencies [2, 3].

Another interesting system in which the influence of dipolar coupling between elements
on the spin wave spectrum of the system can be studied experimentally is the system of layered
nanometric elements having layers of different magnetic materials separated by non-magnetic
spacers with thickness in the nanometric range. The principal effect of the magnetic dipolar
coupling between the layers is the formation of ‘acoustic’ (in-phase) and ‘optic’ (in anti-phase)
coupled spin wave modes in layered structures and the consequent substantial modification of
the spin wave spectrum in a multi-layer array compared to an array of single-layer elements of
the same size [4–10].

In this paper we study both experimentally and theoretically the spectrum of collective
spin wave modes in an array of long magnetic stripes which are situated over a continuous
magnetic film, with a Cu interlayer, so that intensive dipole–dipole interaction between the
stripes and the film takes place. At the same time, the lateral separation between the stripes was
chosen to be large enough to exclude the dipole–dipole interaction between stripes. The stripes
were magnetized along their length (easy magnetization direction), so the demagnetizing field
is negligible and the static magnetic field inside the stripe homogeneous.

The paper has the following structure: in section 2 the details about the sample fabrication
are presented together with the experimental techniques; sections 3 and 4 are devoted to the
description of our analytical and numerical calculations, respectively, while in section 5 the
comparison between the experimental and theoretical results is discussed.

2. Sample preparation and experimental results

The studied sample consists of an array of patterned Ni80Fe20 (30 nm)/Cu (10 nm) stripes,
having width w = 0.5 μm and lateral spacing s = 0.5 μm, deposited on top of a continuous
(unpatterned) permalloy film 30 nm thick. The layered structure, shown in figure 1, was
fabricated on thermally oxidized Si substrates by means of electron-beam lithography, electron-
gun deposition, and a lift-off process. The stripes were arranged in arrays of dimensions of
800 × 800 μm2. A similar array of single-layer isolated permalloy stripes was also fabricated
and used as a reference sample.
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Figure 1. Schematic representation of the sample structure. NiFe (30 nm)/Cu (10 nm) stripes,
0.5 μm wide, are fabricated on a 30 nm thick NiFe sublayer and their separation is s = 0.5 μm. An
external magnetic field H is applied parallel to the long axis of the stripes.
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Figure 2. Hysteresis loop of the array of NiFe/Cu stripes on a NiFe sublayer measured by the
MOKE technique in the longitudinal configuration. The arrows indicate the orientation of the stripes
and film magnetizations at different values of the external magnetic field H .

The hysteresis loops of the sample were measured by the specular magneto-optic Kerr
effect (MOKE) technique in the longitudinal configuration, i.e., with the external field applied
parallel to the long axis of the stripes (along the ‘easy’ direction of magnetization). The method
of nearly crossed polarizer [11], which employs an amplitude-modulated laser with modulation
frequency of 450 Hz and a lock-in amplifier, was used in our experiments.

The measured hysteresis loop of our sample is shown in figure 2. As shown by the arrows
in figure 2, the cycle is characterized by a plateau corresponding to the antiparallel alignment
of the magnetizations of the stripes and the permalloy film, stabilized by the dipolar coupling
between them. This coupling favours the closure of the magnetic flux through the permalloy
layers. The MOKE signal comes from the portion of the sample which is directly illuminated
by light; because of the attenuation depth of light the film beyond the stripes is not reached.
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Therefore, the drop in the magnetization curve observed when H is reversed is proportional
to the ratio between the width of the stripes (w) and the period of the structure (stripes plus
continuous film directly illuminated by light: T = w + �). In our case we expect a drop of
50%, which is in good agreement with the experimental value.

The frequency spectra of the spin wave excitations were measured by the Brillouin
light scattering (BLS) technique. The BLS experiments were carried out at the GHOST
laboratory [12], Perugia University, using a Sandercock (3 + 3)-pass tandem Fabry–Perot
interferometer [13]. The light source used in the BLS experiments is a single-mode solid
state laser operating at λ = 532 nm with the output power of 250 mW. A camera objective
of f-number 2 and focal length 50 mm is used to focus light onto the sample surface. The
scattered light was sent through a crossed analyser to suppress the background of elastically
scattered light and the signal from surface phonons. The sample was mounted on a goniometer
to allow rotation around the field direction, i.e. to vary the incidence angle of light (θ ) between
10◦ and 70◦. The spin wave wavevector probed is parallel to the wire width (y-direction)
and its magnitude, ranging from 0.41 × 105 to 2.22 × 105 cm−1, is related to the angle of
incidence by k = (4π/λ) sin θ . The scheme of the sample and the experimental geometry,
showing the orientation of the applied field H and the direction of the wavevector k, is shown in
figure 1 together with the orientation of the Cartesian coordinate system used for the following
calculations.

The spectra of normal spin wave modes of the sample were recorded in two different types
of measurement: (i) by changing the transferred in-plane wavevector k (contained in the x–y
plane) at a fixed value of the bias magnetic field H = 300 Oe applied parallel to the long side
of the wires (z-direction), and (ii) by changing the magnitude of H in the range between +300
and −300 Oe at a fixed value (θ = 54◦ and therefore k = 1.91 × 105 cm−1) of the incidence
angle of light.

Two representative BLS spectra, recorded in the same experimental conditions (H =
0.3 kOe applied along the stripes long axis and incidence angle of θ = 30◦), are presented
in figure 3 for arrays of isolated stripes (a) (reference sample) and those deposited on the
continuous permalloy layer (b) (main sample). We note that, even though a large number of
well resolved peaks are seen in both spectra, the main effect of the presence of the continuous
permalloy layer in the vicinity of the stripe array is the substantial reduction of the mode
frequencies. They are located in the interval between 8.5 and 16 GHz for the isolated array
of stripes (figure 3(a)), while the interval shifts down between 6 and 13 GHz for the array of
stripes deposited on the permalloy sublayer (figure 3(b)).

3. Analytical model

To explain the above-mentioned decrease of spin wave mode frequencies in the case when
dipole–dipole interaction between the stripe array and the continuous magnetic film takes place
we developed the following analytical model. We took a linearized Landau–Lifshitz equation
of motion and wrote it for the variable magnetizations of the film mf and stripe ms, assuming
that interaction between the stripes is negligible:

ṁf = [
(ωH − ωMα�) ẑ × mf

] − γ MS
[
ẑ × (

hf,f + hf,s
)]

(1a)

ṁs = [
(ωH − ωMα�) ẑ × ms

] − γ MS
[
ẑ × (

hs,s + hs,f
)]

. (1b)

Here ωH = γ H , ωM = 4πγ Ms, H is the bias magnetic field, γ is the gyromagnetic ratio, Ms

is the saturation magnetization, α = A/2π M2
S , where A is the exchange constant measured in

erg cm−1, � is the Laplace operator, and hf,s and hf,f are the variable dipolar magnetic fields,
created by the film dynamic magnetization mf in the stripe and the film itself, respectively.
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Figure 3. Brillouin light scattering spectra recorded for an applied field of 0.3 kOe for (a) the
reference sample: an array of isolated NiFe stripes and (b) the main sample: an array the NiFe/Cu
stripes on a NiFe sublayer.

Similarly, hs,s and hs,f are the corresponding fields created by the dynamic magnetization of the
stripe. The magnetizations mf,s are orthogonal to the constant magnetization Msẑ, i.e. they have
only x and y components, mf,s = mx

f,sx̂ + m y
f,sŷ. In the considered case of thin ferromagnetic

layers, the exchange splitting ≈ωMαex/d2
s,f between the different thickness modes will be

so large that they are almost fully decoupled. Considering only the lowest (quasi-uniform)
thickness mode and assuming the free (unpinned) surface spins at the vertical (normal to the
x-axis) boundaries of the ferromagnetic layers, one can assume that the magnetizations mf,s

depend only on the y coordinate.
The dipolar magnetic fields hf,s in equation (1) are treated as the averaged (over the

thickness of the corresponding ferromagnetic layer) values of the real magnetic fields. The
magnetization mf of the magnetic film can be developed in a Fourier series as

mf (t, y) =
∫ ∞

−∞
mfk (t)eiky dk

2π
(2)

where mfk = m∗
f −k . The dipolar field created by the magnetization (2), averaged over the

thickness of the film, is given by

hff = −4π

∫ ∞

−∞
dk

2π
eiky

{
P (kdf) mx

fkx̂ + [1 − P (kdf)] m y
fkŷ

}
(3)

where

P (ξ) = 1 − e−|ξ |

|ξ | (4)
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while the dipolar field averaged over the thickness of the stripe has the form

hs,f = 2π

∫ ∞

−∞
dk

2π
eiky

{|k| df Qk
(
mx

fk − i sgn (k) m y
fk

) (
x̂ − i sgn (k) ŷ

)}
(5)

where

Qk = e−|k|a P (kdf) P (kds) (6)

and a is the thickness of the non-magnetic spacer.
The magnetization in the ferromagnetic stripe ms can be written as

ms (t, y) =
∑

n=0

√
w

wn
msn (t) sin (βn y + φn) (7)

where βn and φn are determined by the boundary conditions for spins at the lateral edges of the
stripe [14], and wn are the normalization constants, defined by

∫ w

0
sin (βn y + φn) sin (βm y + φm) dy = wnδnm . (8)

To find the dipolar field created by the magnetization ms we note that the magnetization, given
by equation (7) in the region 0 < y < w and vanishing everywhere else, can be written as

ms =
∫ ∞

−∞

∞∑

n=0

Yknmsneiky dk

2π
(9)

where

Ykn =
√

w

wn

∫ w

0
sin (βn y + φn) e−ikydy =

√
w/wn

β2
n − k2

{
βn cos φn + ik sin φn

− e−ikw [βn cos (βnw + φn) + ik sin (βnw + φn)]

}
. (10)

Then the dipolar magnetic field averaged over the thickness of the stripe can be written as

hss = −4π

∞∑

n=0

∫ ∞

−∞
dk

2π
eikyYkn

{
P (kds) mx

skx̂ + (1 − P (kds)) m y
skŷ

}
(11)

while the magnetic field, averaged over the thickness of the film, has the form

hfs = 2π

∞∑

n=0

∫ ∞

−∞
dk

2π
eikyYkn

{|k| ds Qk
(
mx

sk + i sgn (k) m y
sk

) (
x̂ + i sgn (k) ŷ

)}
. (12)

Substituting the expressions (2) and (7) for mf and ms in the Landau–Lifshitz equation (1),
using the expressions for the dipolar fields equations (3), (5), (11), and (12), and the
orthogonality conditions, equation (8), one derives equations for the Fourier amplitudes of the
variable magnetizations in the film mfk and the stripe msn :

ṁx
fk = −Akm y

fk + i
ωM

2
kds Qk

∞∑

n=0

Ykn
(
mx

sn + i sgn (k) m y
sn

)
(13a)

ṁ y
fk = Bkmx

fk − i
ωM

2
kds Qk

∞∑

n=0

Ykn
(
m y

sn − i sgn (k) mx
sn

)
(13b)

ṁx
sn = − (ωH n + ωM ) m y

sn + ωM

∞∑

n=0

Pnn′ m y
sn′

− i
ωM

2L

∫ ∞

−∞

{
Y ∗

knkdf Qk
(
mx

fk − i sgn (k) m y
fk

)} dk

2π
(13c)

ṁ y
sn = ωH nmx

sn + ωM

∞∑

n=0

Pnn′ mx
sn′ + i

ωM

2L

∫ ∞

−∞

{
Y ∗

knkdf Qk
(
m y

fk + i sgn (k) mx
fk

)} dk

2π
. (13d)
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Here

Ak = ωH k + ωM (1 − P (kdf)) (14a)

Bk = ωH k + ωM P (kdf) (14b)

ωH k = ωH + ωMαk2 (14c)

ωH n = ωH + ωMαβ2
n (14d)

Pnn′ = 1

L

∫ ∞

−∞
P (kdf) Y ∗

knYkn′
dk

2π
. (14e)

A monochromatic particular solution of the system of equations (13) can be found by replacing
d/dt with −iω. Solving equations (13a) and (13b), one can find the components in the film
magnetization:

mx
fk = ωM

2
kdsQk

ω + sgn (k) Ak

ω2
k − ω2

∞∑

n=0

Ykn
(
mx

sn + i sgn (k) m y
sn

)
(15a)

m y
fk = i

ωM

2
kds Qk

Bk + sgn (k) ω

ω2
k − ω2

∞∑

n=0

Ykn
(
mx

sn + i sgn (k) m y
sn

)
. (15b)

Here ωk is the frequency of the surface spin wave mode with wavevector k propagating in the
film in the y-direction (similar to the Damon–Eshbach mode [15]):

ω2
k = Ak Bk = ωH k (ωH k + ωM ) + ω2

M P (kdf) [1 − P (kdf)] . (16)

In equation (15) we have neglected possible propagating-wave solutions mfk ∝ δ (ω − ωk),
which correspond to the continuous spin wave spectrum of the ferromagnetic film, because here
we are interested in the standing spin wave excitations of a ferromagnetic stripe. Substituting
expressions (15) for the magnetization components in equations (13c) and (13d) we get a
coupled set of equations for the Fourier amplitudes of the spin excitations in the stripe:

− iωmx
sn = − (ωH n + ωM) m y

sn + ωM

∞∑

n′=0

(Pnn′ + Snn′) m y
sn′ − iω

∞∑

n′=0

Tnn′mx
sn′ (17a)

−iωm y
sn = ωH nmx

sn + ωM

∞∑

n′=0

(Pnn′ − Snn′) mx
sn′ − iω

∞∑

n′=0

Tnn′m y
sn′ (17b)

where the coupling coefficients Tnn′ and Snn′ are given by

Tnn′ = ω2
M

2ω

dsdf

L

∫ ∞

−∞
Y ∗

knYkn′ k2 Q2
k

ω + sgn (k) k

ω2
k − ω2

dk

2π
(18a)

Snn′ = ωM

2

dsdf

L

∫ ∞

−∞
Y ∗

kn Ykn′ k2 Q2
k

sgn (k) ω + k

ω2
k − ω2

dk

2π
(18b)

and

k ≡ ωH k + ωM

2
. (19)

In the first approximation one can neglect coupling between the different standing dipolar spin
wave modes of the stripe (modes with different index n). In this ‘diagonal’ case the approximate
expression for the eigenfrequency ωn of the stripe’s standing spin wave mode can be written in
a form similar to equation (16):

(1 − Tnn)
2 ω2

n = ω̃H n (ω̃H n + ωM ) + ω2
M Pnn (1 − Pnn) (20)

where

ω̃H n ≡ ωH n − ωM Snn . (21)
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Figure 4. Frequency spectrum of standing spin wave modes kn = nπ/w in a NiFe stripe calculated
from equation (20). Solid horizontal lines correspond to the case of an isolated stripe with no
coupling to the continuous sublayer (Snn = Tnn = 0), while dashed horizontal lines correspond
to the case of dipolar coupling between the stripe and the sublayer, when coupling coefficients
are calculated from equation (18). The continuous solid line corresponds to the dispersion of a
propagating spin wave in a continuous sublayer calculated from equation (16).

Note that the coupling coefficients Tnn′ and Snn′ depend on the frequency ω = ωn , and,
therefore the diagonal dispersion equation (20) can be solved only numerically.

Equation (20) allows one to calculate the frequencies of spin wave modes in a structure
consisting of an array of metal stripes above the continuous magnetic film of figure 1 in
the case when all the geometric and material parameters of the structure are known. These
parameters can be experimentally determined independently by measuring the dispersion law
of the propagating spin wave mode (Damon–Eshbach mode) in the continuous film given by
equation (16) and the frequency of the first (p = 1) exchange-dominated spin wave mode
standing along the film thickness in a continuous film (perpendicular standing spin wave,
PSSW) given by equation

ω2
p = [

ωH + ωMα(pπ/df)
2
] [

ωH + ωMα(pπ/df)
2 + ωM

]
(22)

obtained from equation (12) in [16].
Comparison of equations (16) and (22) with the BLS experimental measurements made on

the control sample of a continuous permalloy film with nominal thickness of 30 nm allowed
us to determine the following parameters of the experimental structure figure 1: effective
‘magnetic’ thickness of permalloy layers df = ds = 26.5 nm, saturation magnetization of
permalloy film 4π Ms = 10 kOe, exchange constant of permalloy A = 1 × 10−6 erg cm−1, and
the gyromagnetic ratio γ /2π = 3.0 MHz Oe−1.

Using these experimentally determined parameters and equation (20) we calculated the
discrete spin wave frequencies in the isolated (no interaction with continuous film) array of
permalloy stripes (shown by solid horizontal lines in figure 4) and the discrete spin wave
frequencies in the array of permalloy stripes coupled to the continuous permalloy film through
the non-magnetic spacer of the thickness a = 10 nm (shown by dashed horizontal lines in
figure 4). The dispersion law of the surface spin wave mode (Damon–Eshbach mode) is shown
in figure 4 by a solid continuous curve.

8
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of thickness a of the Cu spacer.

It is clear from figure 4 that the dipole–dipole interaction between the stripes and the
continuous film practically does not change the dispersion law of the propagating spin wave
mode in the continuous film, but leads to a substantial reduction of frequencies of discrete spin
wave modes standing along the stripe width (and having discrete wave numbers k = nπ/w)
in the array of magnetic stripes. To demonstrate that the frequency reduction is due to the
strength of the dipolar coupling in figure 5 we present the results of calculation of the discrete
spin wave mode frequencies of the stripes as a function of the mode number n for the different
thicknesses of the Cu spacer in the range between 5 and 100 nm. It is clearly seen from figure 5
that the mode frequencies increase for the increasing the spacer thickness until they converge
towards the values expected for isolated stripes.

4. Numerical model

We have also calculated the frequencies and spatial distributions of the discrete spin wave
modes of the structure shown in figure 1 using the previously published numerical method [17]
based on the Green function formalism for spin waves. This method involves calculation
of magnetic correlation functions required for the fluctuation–dissipation theorem. In this
numerical formulation we replaced the infinite permalloy sublayer used in the analytical model
by a sublayer of a finite width (10 μm along the axis ‘y’) which was sufficiently wide to
imitate a film of an infinitely large width in its interaction with a single magnetic stripe of
width w = 500 nm. In order to reduce the number of calculation points, the sublayer was not
meshed uniformly: the central part under the stripe (twice as large as the stripe) was meshed
using triangular elements with the lateral size of about 10 nm (like in the stripe), while the
remaining parts of the sublayer were meshed using triangular finite elements with a lateral size
of about 50 nm. With such a mesh the calculated profiles of the discrete spin wave modes
(shown in figure 6) demonstrated no significant discontinuity when crossing the boundaries
between the two differently meshed zones.

The profiles of the eigenmodes were studied through the correlation function〈
m y(x, y), m y(x ′, y ′)

〉
. Letting y = y ′ vary within the stripe (−w/2 � y = y ′ �w/2) and

9
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Figure 6. (Upper panel) Numerically calculated spatial profiles (squared dynamic magnetization
as a function of the coordinate y) of the four lowest spin wave eigenmodes in the stripes and the
sublayer under the stripe. (Lower panel) Calculated correlation functions for the same modes shown
in the upper panel.

fixing x = x ′ = ds/2 (stripe half-thickness), we obtain the profile within the stripe. Similarly,
when x = x ′ = df/2 (sublayer half-thickness) we obtain the profile in the sublayer. Finally,
by taking y = y ′ within the stripe and x at the stripe mid-thickness and x ′ at the sublayer
mid-thickness, we calculate the correlation function that characterizes the symmetry of the

10



J. Phys.: Condens. Matter 19 (2007) 246221 G Gubbiotti et al

0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0

6

9

12

15

18

21

24

Lines - calculation using Eqs.(16), (20), (22)
Dots - BLS experiment

PSSW

k  (105 cm-1)

6

9

12

15

18

21

24

Lines - numerical calculation
Dots - BLS experiment

PSSW

F
re

qu
en

cy
  (

G
H

z)
F

re
qu

en
cy

  (
G

H
z)

k  (105 cm-1)

Figure 7. Comparison between the measured and calculated frequencies of spin wave modes in the
structure shown in figure 1 as functions of the wave number component along the axis y. In the
upper and lower panels the results of analytical (numerical) calculations are shown, respectively.

studied eigenmodes. Similar to the acoustic and optical mode assignment in a continuous
unpatterned trilayer, consisting of two ferromagnetic films separated by a nonmagnetic spacer,
the calculated modes can be primarily classified according to whether the precessional motion
of the dynamic magnetizations in the two ferromagnetic layers is in phase or out of phase.

5. Results and discussion

The comparison between the experimentally measured frequencies of the spin wave modes in
the structure shown in figure 1 (dots) and the results of analytic and numerical calculations of
these frequencies (lines) are presented in the upper and lower panels of figure 7, respectively.
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It is clear from the upper panel of figure 7 that the approximate analytic model
equation (20) for n = 1, 2, 3 . . . gives a good quantitative description of all the ‘odd-numbered’
experimentally observed discrete modes of the structure shown in figure 1. At the same
time, the ‘even-numbered’ experimentally observed spin wave modes are not described by
the analytic model equation (20). We believe that this discrepancy between the experiment and
our approximate analytic model is related to our initial assumption of a uniform distribution of
the dynamic magnetization along the film thickness that was used in the analytic calculations
leading to equation (20).

It is known, however, that in the geometry of figure 1 the spin waves propagating in the
continuous sublayer are of a surface nature, and the distribution of the dynamic magnetization
along the film thickness in such a wave is exponential and depends on the direction of wave
propagation. In the case of a free magnetic film this fact does not influence the frequency
of the waves and the waves propagating in both directions along the axis y have the same
frequency due to the symmetry. This degeneracy is removed in the case when dipole–dipole
interaction between the continuous sublayer and the magnetic stripe is present. In that case
the quasi-Damon–Eshbach spin waves propagating in opposite directions along the axis y
interact differently with the standing spin wave modes of a finite-width magnetic stripe, and
two different characteristic frequencies appear in the experimental spectrum of the magnetic
structure shown in figure 1 (see the experimental points in figure 7). Although our simplified
analytical approach could not predict this frequency splitting, it explains the main qualitative
feature produced by the dipole–dipole coupling between the continuous sublayer and the finite-
width magnetic stripe, namely, the strong decrease of the frequencies of coupled modes in
comparison with the case of isolated stripes (see figure 4).

In order to reproduce in a more quantitative way all the measured frequencies, we used
the numerical method described in section 4. This enabled us to calculate both the discrete
frequencies of the standing spin wave modes and spatial profiles of these modes along the
stripe width (axis y). In figure 7 (bottom panel) we present the comparison between the BLS
experiment and the numerically calculated frequencies of the spin wave modes. It is clear
that numerical calculation describes the mode frequency splitting missed in the approximate
analytic approach (top panel of figure 7) and gives a good quantitative description of the
BLS experiment. In the upper panel of figure 6 we show the calculated spatial distributions
of the dynamic magnetizations for the lowest four spin wave modes, while in the lower
panel we report the correlation function for the same modes, also calculated numerically.
As a general comment on the modes’ profiles, we notice that the profiles are nearly the
same in the stripe and in the sublayer just under the stripe for the first and third modes.
Moreover, the correlation functions for these odd modes (lower panel of figure 6) are negative,
indicating an out-of-phase precession, and are symmetric with respect to the mid-width of
the stripe. In contrast, for the second and fourth modes, the profile in the stripe presents a
maximum when the profile in the sublayer has a minimum. For these modes the correlation
function is anti-symmetric with respect to the mid-width of the stripe, indicating a phase
shift of π/2.

As a final step of our study, we investigated the behaviour of the frequencies of the spin
wave modes (see the dots in figure 8) under the conditions of a magnetization reversal process
in the structure figure 1 when the applied bias magnetic field was varied between −0.3 and
+0.3 kOe. As can be inferred from the measured hysteresis loop shown in figure 2, in this field
range there are two different possible magnetic configurations for the static magnetizations
in the stripe and the continuous sublayer: parallel or antiparallel alignment. These different
magnetization configurations affect the measured frequencies of spin wave modes in the
structure shown in figure 1.
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Figure 8. Comparison between the measured (dots) and numerically calculated (solid lines) spin
wave mode frequencies of the structure shown in figure 1 as a function of H in the range from −0.3
to +0.3 kOe.

If we start from a positive applied field of +0.3 kOe and reduce it down to zero, the
static magnetizations of the stripe and sublayer remain parallel to one another, and the mode
frequencies show a monotonic decrease with the decrease of the bias magnetic field. As soon
as the direction of the bias (and the direction of the static magnetization in a sublayer) is
reversed, we see a plateau in the hysteresis loop in the range of negative bias fields between 0
and −100 Oe. In this range of the bias fields values the spin wave frequencies are also almost
constant and independent of the exact value of the bias field. We note that no sharp discontinuity
in the frequency values of spin wave modes is observed at the boundaries of this region. All
these features are well reproduced in our numerical calculations (solid lines in figure 8).

6. Conclusions

In this paper we have demonstrated both experimentally and theoretically that the effect of
dipole–dipole coupling between magnetic stripes of a finite width and a continuous magnetic
sublayer leads to a significant reduction of the frequencies of the standing spin wave modes
in the stripes, compared to the case of isolated magnetic stripes. In addition, one observes
a splitting of the spin–wave peaks due to the dipole–dipole interaction of these modes with
surface spin wave modes propagating in the continuous sublayer in two opposite directions
(perpendicular to the direction of the in-plane bias magnetic field in this sublayer). The
influence of reversing the relative magnetization directions in the stripe and in the sublayer has
also been studied, showing that in the range of bias fields where these directions are opposite
the spin wave frequencies are almost independent of the bias field magnitude.
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